Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 37(12): 2346-2353, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015728

RESUMO

ABSTRACT: Stavridis, I, Ekizos, A, Zisi, M, Agilara, G-O, Tsolakis, C, Terzis, G, and Paradisis, G. The effects of heavy resisted sled pulling on sprint mechanics and spatiotemporal parameters. J Strength Cond Res 37(12): 2346-2353, 2023-This study examines the effects of 2 resisted sled sprinting (RSS) training programs: with a load corresponding to the running velocity associated with the apex of the individual velocity-power relationship (50%vdec), with a load equal to 10% of body mass (10% BM), and of an unresisted sprint training (URS). We measured the 30-m sprint performance in intervals of 5 m examining sprint acceleration, mechanical properties (theoretical maximal horizontal power [Pmax], force [F0], velocity [v0], slope of the force-velocity relationship [SFv], maximal ratio of horizontal-to-resultant force [RFmax], rate of decrease in RF [Drf]), and spatiotemporal parameters (step frequency [SF], step length [SL], flight time [FT], and contact time [CT]). Twenty-seven sprinters were randomly assigned into the 50%vdec, 10% BM, and URS groups, performing 12 sessions over 6 consecutive weeks (2 sets of 5 sprints per session). The 50%vdec group significantly improved (p < 0.05) their performance in all 30-m intervals. Posttraining, the 50%vdec group showed significantly increased Pmax, F0, and RFmax (mean differences: 1.46 ± 1.70 W·kg-1, 0.51 ± 0.68 N·kg-1, and 0.17 ± 0.18%, respectively), compared with pretraining. The 50%vdec group achieved higher SF, whereas FT decreased postintervention. No significant changes (p > 0.05) were found in the performance and mechanical and spatiotemporal variables in the other groups. In conclusion, RSS training with a load of 50%vdec provides an effective loading stimulus to induce adaptations that improve sprint acceleration performance. The improvements are explained by greater amounts of force and power, efficient force application, and higher step frequencies.


Assuntos
Desempenho Atlético , Treinamento Resistido , Humanos , Atletas , Aceleração
2.
Front Physiol ; 14: 1185556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378078

RESUMO

Elite athletes are regularly exposed to high and repetitive mechanical stresses and impacts, resulting in high injury rates. The consequences of injury can range from time lost from training and competition to chronic physical and psychological burden, with no guarantee that the athlete will return to preinjury levels of sport activity and performance. Prominent predictors include load management and previous injury, highlighting the importance of the postinjury period for effective return to sport (RTS). Currently, there is conflicting information on how to choose and assess the best reentry strategy. Treating RTS as a continuum, with controlled progression of training load and complexity, seems to provide benefits in this process. Furthermore, objectivity has been identified as a critical factor in improving the effectiveness of RTS. We propose that assessments derived from biomechanical measurements in functional settings can provide the objectivity needed for regular biofeedback cycles. These cycles should aim to identify weaknesses, customize the load, and inform on the status of RTS progress. This approach emphasizes individualization as the primary determinant of RTS and provides a solid foundation for achieving it.

3.
Front Physiol ; 12: 686259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795597

RESUMO

In this paper we examined how runners with different initial foot strike pattern (FSP) develop their pattern over increasing speeds. The foot strike index (FSI) of 47 runners [66% initially rearfoot strikers (RFS)] was measured in six speeds (2.5-5.0 ms-1), with the hypotheses that the FSI would increase (i.e., move toward the fore of the foot) in RFS strikers, but remain similar in mid- or forefoot strikers (MFS) runners. The majority of runners (77%) maintained their original FSP by increasing speed. However, we detected a significant (16.8%) decrease in the FSI in the MFS group as a function of running speed, showing changes in the running strategy, despite the absence of a shift from one FSP to another. Further, while both groups showed a decrease in contact times, we found a group by speed interaction (p < 0.001) and specifically that this decrease was lower in the MFS group with increasing running speeds. This could have implications in the metabolic energy consumption for MFS-runners, typically measured at low speeds for the assessment of running economy.

4.
Front Bioeng Biotechnol ; 8: 581619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195143

RESUMO

The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.

5.
Heliyon ; 6(10): e05377, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163662

RESUMO

Walking and running are mechanically and energetically different locomotion modes. For selecting one or another, speed is a parameter of paramount importance. Yet, both are likely controlled by similar low-dimensional neuronal networks that reflect in patterned muscle activations called muscle synergies. Here, we challenged human locomotion by having our participants walk and run at a very broad spectrum of submaximal and maximal speeds. The synergistic activations of lower limb locomotor muscles were obtained through decomposition of electromyographic data via non-negative matrix factorization. We analyzed the duration and complexity (via fractal analysis) over time of motor primitives, the temporal components of muscle synergies. We found that the motor control of high-speed locomotion was so challenging that the neuromotor system was forced to produce wider and less complex muscle activation patterns. The motor modules, or time-independent coefficients, were redistributed as locomotion speed changed. These outcomes show that humans cope with the challenges of high-speed locomotion by adapting the neuromotor dynamics through a set of strategies that allow for efficient creation and control of locomotion.

6.
Sci Rep ; 10(1): 7249, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350313

RESUMO

Deficits during gait poses a significant threat to the quality of life in patients with Multiple Sclerosis (MS). Using the muscle synergy concept, we investigated the modular organization of the neuromuscular control during walking in MS patients compared to healthy participants (HP). We hypothesized a widening and increased fuzziness of motor primitives (e.g. increased overlap intervals) in MS patients compared to HP allowing the motor system to increase robustness during walking. We analysed temporal gait parameters, local dynamic stability and muscle synergies from myoelectric signals of 13 ipsilateral leg muscles using non-negative matrix factorization. Compared to HP, MS patients showed a significant decrease in the local dynamic stability of walking during both, preferred and fixed (0.7 m/s) speed. MS patients demonstrated changes in time-dependent activation patterns (motor primitives) and alterations of the relative muscle contribution to the specific synergies (motor modules). We specifically found a widening in three out of four motor primitives during preferred speed and in two out of four during fixed speed in MS patients compared to HP. The widening increased the fuzziness of motor control in MS patients, which allows the motor system to increase its robustness when coping with pathology-related motor deficits during walking.


Assuntos
Esclerose Múltipla/fisiopatologia , Desempenho Psicomotor , Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Masculino
7.
iScience ; 23(1): 100796, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31962235

RESUMO

Is the control of movement less stable when we walk or run in challenging settings? Intuitively, one might answer that it is, given that challenging locomotion externally (e.g., rough terrain) or internally (e.g., age-related impairments) makes our movements more unstable. Here, we investigated how young and old humans synergistically activate muscles during locomotion when different perturbation levels are introduced. Of these control signals, called muscle synergies, we analyzed the local stability and the complexity (or irregularity) over time. Surprisingly, we found that perturbations force the central nervous system to produce muscle activation patterns that are less unstable and less complex. These outcomes show that robust locomotion control in challenging settings is achieved by producing less complex control signals that are more stable over time, whereas easier tasks allow for more unstable and irregular control.

8.
PLoS One ; 14(12): e0226263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826026

RESUMO

The ability to control weight shifting (voluntary sway) is a crucial factor for stability during standing. Postural tracking of an oscillating visual target when standing on a compliant surface (e.g. foam) is a challenging weight shifting task that may alter the stability of the system and the muscle activation patterns needed to compensate for the perturbed state. The purpose of this study was to examine the effects of surface stability and sway frequency on the muscle activation of the lower limb, during visually guided voluntary postural sway. Seventeen volunteers performed a 2-min voluntary sway task in the anterior-posterior direction following with their projected center of pressure (CoPAP) a periodically oscillating visual target on a screen. The target oscillated at a frequency of 0.25 Hz or 0.125 Hz, while the participants swayed on solid ground (stable surface) or on a foam pad (unstable surface), resulting in four experimental conditions. The electromyogram (EMG) of 13 lower limb muscles was measured and the target-CoPAP coupling was evaluated with coherence analysis, whereas the difference in the stability of the system between the conditions was estimated by the maximum Lyapunov exponent (MLE). The results showed that slower oscillations outperformed the faster in terms of coherence and revealed greater stability. On the other hand, unstable ground resulted in an undershooting of the CoPAP to the target and greater MLE. Regarding the EMG data, a decreased triceps surae muscle activation at the low sway frequency compared to the higher was observed, whereas swaying on foam induced higher activation on the tibialis anterior as well. It is concluded that swaying voluntarily on an unstable surface results in reduced CoPAP and joint kinematics stability, that is accomplished by increasing the activation of the distal leg muscles, in order to compensate for this perturbation. The reduction of the sway frequency limits the effect of the unstable surface, on the head and upper body, improves the temporal component of coherence between CoP and target, whereas EMG activity is decreased. These findings might have implications in rehabilitation programs.


Assuntos
Movimento , Postura , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Articulações/fisiologia , Masculino , Músculo Esquelético/fisiologia
9.
Sci Rep ; 9(1): 12273, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439926

RESUMO

Perturbation-based exercise interventions challenge balance and improve reactive motor control. Our purpose was to investigate the modular organisation during a standing balance task in both stable and unstable conditions to provide new insights into the neuromuscular control mechanisms needed to cope with perturbations. Fifteen participants performed 54 cycles of a specific task (i.e. pass from a double- to a single-leg standing) on stable ground and an unstable oscillating platform (Posturomed). Muscle synergies were extracted from the electromyographic activity of thirteen lower limb muscles. The maximum Lyapunov exponents of different body segments were calculated using kinematic data. We found two synergies functionally associated with the single- and double-leg stance in both stable and unstable conditions. Nonetheless, in the unstable condition participants needed an extra muscle synergy also functionally related to the single stance. Although a simple organisation of the neuromuscular system was sufficient to maintain the postural control in both conditions, the increased challenge in the oscillating platform was solved by adding one extra synergy. The addition of a new synergy with complementary function highlighted an increased motor output's robustness (i.e. ability to cope with errors) in the presence of perturbations.


Assuntos
Eletromiografia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
10.
Front Physiol ; 9: 1509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420812

RESUMO

The human body is an outstandingly complex machine including around 1000 muscles and joints acting synergistically. Yet, the coordination of the enormous amount of degrees of freedom needed for movement is mastered by our one brain and spinal cord. The idea that some synergistic neural components of movement exist was already suggested at the beginning of the 20th century. Since then, it has been widely accepted that the central nervous system might simplify the production of movement by avoiding the control of each muscle individually. Instead, it might be controlling muscles in common patterns that have been called muscle synergies. Only with the advent of modern computational methods and hardware it has been possible to numerically extract synergies from electromyography (EMG) signals. However, typical experimental setups do not include a big number of individuals, with common sample sizes of 5 to 20 participants. With this study, we make publicly available a set of EMG activities recorded during treadmill running from the right lower limb of 135 healthy and young adults (78 males and 57 females). Moreover, we include in this open access data set the code used to extract synergies from EMG data using non-negative matrix factorization (NMF) and the relative outcomes. Muscle synergies, containing the time-invariant muscle weightings (motor modules) and the time-dependent activation coefficients (motor primitives), were extracted from 13 ipsilateral EMG activities using NMF. Four synergies were enough to describe as many gait cycle phases during running: weight acceptance, propulsion, early swing, and late swing. We foresee many possible applications of our data that we can summarize in three key points. First, it can be a prime source for broadening the representation of human motor control due to the big sample size. Second, it could serve as a benchmark for scientists from multiple disciplines such as musculoskeletal modeling, robotics, clinical neuroscience, sport science, etc. Third, the data set could be used both to train students or to support established scientists in the perfection of current muscle synergies extraction methods. All the data is available at Zenodo (doi: 10.5281/zenodo.1254380).

11.
Front Physiol ; 9: 1101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197597

RESUMO

The maximum Lyapunov exponent (MLE) has often been suggested as the prominent measure for evaluation of dynamic stability of locomotion in pathological and healthy population. Although the popularity of the MLE has increased in the last years, there is scarce information on the reliability of the method, especially during running. The purpose of the current study was, thus, to examine the reliability of the MLE during both walking and running. Sixteen participants walked and ran on a treadmill completing two measurement blocks (i.e., two trials per day for three consecutive days per block) separated by 2 months on average. Six different marker-sets on the trunk were analyzed. Intraday, interday and between blocks reliability was assessed using the intraclass correlation coefficient (ICC) and the root mean square difference (RMSD). The MLE was on average significantly higher (p < 0.001) in running (1.836 ± 0.080) compared to walking (1.386 ± 0.207). All marker-sets showed excellent ICCs (>0.90) during walking and mostly good ICCs (>0.75) during running. The RMSD ranged from 0.023 to 0.047 for walking and from 0.018 to 0.050 for running. The reliability was better when comparing MLE values between blocks (ICCs: 0.965-0.991 and 0.768-0.961; RMSD: 0.023-0.034 and 0.018-0.027 for walking and running respectively), and worse when considering trials of the same day (ICCs: 0.946-0.980 and 0.739-0.844; RMSD: 0.042-0.047 and 0.045-0.050 for walking and running respectively). Further, different marker-sets affect the reliability of the MLE in both walking and running. Our findings provide evidence that the assessment of dynamic stability using the MLE is reliable in both walking and running. More trials spread over more than 1 day should be considered in study designs with increased demands of accuracy independent of the locomotion condition.

12.
J Exp Biol ; 221(Pt 15)2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29895679

RESUMO

The current study investigates the effect of altering the point of force application (PFA) from the rearfoot towards the fore of the foot on the metabolic energy consumption and the influence of transitioning to this technique over a short or a longer timeframe. The participants were randomly assigned into two experimental and one control group: a short-term intervention group (STI, N=17; two training sessions), a long-term intervention group (LTI, N=10; 14-week gradual transition) and a control group (CG, N=11). Data were collected at two running velocities (2.5 and 3.0 m s-1). The cost coefficient (i.e. energy required per unit of vertical ground reaction force; J N-1) decreased (P<0.001) after both interventions due to a more anterior PFA during running (STI: 12%, LTI: 11%), but led to a higher (P<0.001) rate of force generation (STI: 17%, LTI: 15.2%). Dynamic stability of running showed a significant (P<0.001) decrease in the STI (2.1%), but no differences (P=0.673) in the LTI. The rate of metabolic energy consumption increased in the STI (P=0.038), but remained unchanged in the LTI (P=0.660). The CG had no changes. These results demonstrate that the cost coefficient was successfully decreased following an alteration in the running technique towards a more anterior PFA. However, the energy consumption remained unchanged because of a simultaneous increase in rate of force generation due to a decreased contact time per step. The increased instability found during the short-term intervention and its neutralization after the long-term intervention indicates a role of motor control errors in the economy of running after acute alterations in habitual running execution.


Assuntos
, Consumo de Oxigênio , Corrida/fisiologia , Fenômenos Biomecânicos , Metabolismo Energético , Feminino , Marcha , Humanos , Masculino
13.
Sci Rep ; 8(1): 2740, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426876

RESUMO

The need to move over uneven terrain is a daily challenge. In order to face unexpected perturbations due to changes in the morphology of the terrain, the central nervous system must flexibly modify its control strategies. We analysed the local dynamic stability and the modular organisation of muscle activation (muscle synergies) during walking and running on an even- and an uneven-surface treadmill. We hypothesized a reduced stability during uneven-surface locomotion and a reorganisation of the modular control. We found a decreased stability when switching from even- to uneven-surface locomotion (p < 0.001 in walking, p = 0.001 in running). Moreover, we observed a substantial modification of the time-dependent muscle activation patterns (motor primitives) despite a general conservation of the time-independent coefficients (motor modules). The motor primitives were considerably wider in the uneven-surface condition. Specifically, the widening was significant in both the early (+40.5%, p < 0.001) and late swing (+7.7%, p = 0.040) phase in walking and in the weight acceptance (+13.6%, p = 0.006) and propulsion (+6.0%, p = 0.041) phase in running. This widening highlighted an increased motor output's robustness (i.e. ability to cope with errors) when dealing with the unexpected perturbations. Our results confirmed the hypothesis that humans adjust their motor control strategies' timing to deal with unsteady locomotion.


Assuntos
Análise da Marcha , Corrida/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Voluntários Saudáveis , Humanos , Masculino
14.
Front Physiol ; 8: 958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213246

RESUMO

For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running.

15.
Gait Posture ; 56: 31-36, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28482203

RESUMO

INTRODUCTION: Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. METHODS: Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. RESULTS: Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. CONCLUSIONS: Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance.


Assuntos
Pé/fisiologia , Equilíbrio Postural/fisiologia , Corrida/fisiologia , Sapatos , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Exp Biol ; 220(Pt 5): 807-813, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980122

RESUMO

The neuromuscular control of human movement can be described by a set of muscle synergies factorized from myoelectric signals. There is some evidence that the selection, activation and flexible combination of these basic activation patterns are of a neural origin. We investigated the muscle synergies during incline and level walking to evaluate changes in the modular organization of neuromuscular control related to changes in the mechanical demands. Our results revealed five fundamental (not further factorizable) synergies for both walking conditions but with different frequencies of appearance of the respective synergies during incline compared with level walking. Low similarities across conditions were observed in the timing of the activation patterns (motor primitives) and the weightings of the muscles within the respective elements (motor modules) for the synergies associated with the touchdown, mid-stance and early push-off phase. The changes in neuromuscular control could be attributed to changes in the mechanical demands in support, propulsion and medio-lateral stabilization of the body during incline compared with level walking. Our findings provide further evidence that the central nervous system flexibly uses a consistent set of neural control elements with a flexible temporal recruitment and modifications of the relative muscle weightings within each element to provide stable locomotion under varying mechanical demands during walking.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Marcha , Humanos , Masculino , Contração Muscular , Fenômenos Fisiológicos do Sistema Nervoso , Adulto Jovem
17.
Int J Neural Syst ; 27(5): 1750007, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27873551

RESUMO

We investigated the influence of three different high-pass (HP) and low-pass (LP) filtering conditions and a Gaussian (GNMF) and inverse-Gaussian (IGNMF) non-negative matrix factorization algorithm on the extraction of muscle synergies from myoelectric signals during human walking and running. To evaluate the effects of signal recording and processing on the outcomes, we analyzed the intraday and interday computation reliability. Results show that the IGNMF achieved a significantly higher reconstruction quality and on average needs one less synergy to sufficiently reconstruct the original signals compared to the GNMF. For both factorizations, the HP with a cut-off frequency of 250[Formula: see text]Hz significantly reduces the number of synergies. We identified the filter configuration of fourth order, HP 50[Formula: see text]Hz and LP 20[Formula: see text]Hz as the most suitable to minimize the combination of fundamental synergies, providing a higher reliability across all filtering conditions even if HP 250[Formula: see text]Hz is excluded. Defining a fundamental synergy as a single-peaked activation pattern, for walking and running we identified five and six fundamental synergies, respectively using both algorithms. The variability in combined synergies produced by different filtering conditions and factorization methods on the same data set suggests caution when attributing a neurophysiological nature to the combined synergies.


Assuntos
Algoritmos , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Distribuição Normal , Fatores de Tempo , Adulto Jovem
18.
Ann Biomed Eng ; 44(5): 1646-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26471786

RESUMO

The foot strike pattern (FSP, description of how the foot touches the ground at impact) is recognized to be a predictor of both performance and injury risk. The objective of the current investigation was to validate an original foot strike pattern assessment technique based on the numerical analysis of foot pressure distribution. We analyzed the strike patterns during running of 145 healthy men and women (85 male, 60 female). The participants ran on a treadmill with integrated pressure plate at three different speeds: preferred (shod and barefoot 2.8 ± 0.4 m/s), faster (shod 3.5 ± 0.6 m/s) and slower (shod 2.3 ± 0.3 m/s). A custom-designed algorithm allowed the automatic footprint recognition and FSP evaluation. Incomplete footprints were simultaneously identified and corrected from the software itself. The widely used technique of analyzing high-speed video recordings was checked for its reliability and has been used to validate the numerical technique. The automatic numerical approach showed a good conformity with the reference video-based technique (ICC = 0.93, p < 0.01). The great improvement in data throughput and the increased completeness of results allow the use of this software as a powerful feedback tool in a simple experimental setup.


Assuntos
Algoritmos , Pé/fisiologia , Pressão , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Gravação em Vídeo
19.
Ultrasound Med Biol ; 41(7): 1821-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25842257

RESUMO

The purpose of this study was to evaluate the reliability and limits of agreement for assessment of the anatomical cross-sectional area (ACSA) of the supraspinatus muscle using B-mode ultrasonography. Sixteen participants were examined with two different protocols, on two different days. There were no statistically significant differences (p > 0.05) in ACSA values between days 1 and 2 or between protocols 1 and 2; the average intra-class correlation coefficient ranged from 0.93 to 0.96. The limits of agreement for supraspinatus ACSA were, in both protocols, about ± 1 cm(2). Our findings revealed that both protocols had high reliability in distinguishing differences of about 1 cm(2) between groups or after interventions and that ultrasonography can be used for experimental designs in which the expected changes in ACSA would be higher than 14%.


Assuntos
Algoritmos , Anatomia Transversal/métodos , Músculos do Dorso/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Manguito Rotador/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia
20.
J Electromyogr Kinesiol ; 23(6): 1278-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24021864

RESUMO

PURPOSE: This study examined the reliability of patellar tendon cross sectional area (CSA) measurement using brightness mode ultrasonography. METHODS: The patellar tendon CSA of fourteen participants was examined on two different days and at three different positions (proximal, median and distal). Five trials per day were conducted in each position, replacing the ultrasound probe on every trial. The images were examined by three different and equally experienced observers. We compared the mean of the five trials in each position to examine the day, observer and position effect. Further, Bland and Altman plots, root mean square (RMS) differences and intraclass correlation coefficients (ICC) were calculated. RESULTS: There was a significant (p < 0.05) day, observer and position effect on the CSA, while the average ICC was 0.592. The Bland and Altman plots showed that differences between conditions or groups, should be in average lower than 37% or higher than 55% of the patellar tendon CSA to be important for clinical or intervention studies. CONCLUSION: Our findings show low reliability of the method, which resulted from the low clarity and unclear visibility of tissue boundaries in the ultrasound images. Therefore, the measurement of the CSA of the patellar tendon using ultrasound does not provide accurate and reliable results.


Assuntos
Ligamento Patelar/anatomia & histologia , Ligamento Patelar/diagnóstico por imagem , Adulto , Análise de Variância , Anatomia Transversal , Feminino , Voluntários Saudáveis , Humanos , Masculino , Postura , Reprodutibilidade dos Testes , Ultrassonografia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...